Hexakis(fluorodimethylsilyl)benzene, Hexakis(methoxydimethylsilyl)benzene, and Related Compounds. Novel Neutral Pentacoordinate Structures for Silicon and Merry-Go-Round Degenerate Fluorine Migration ${ }^{1}$

Keisuke Ebata, Taro Inada, Chizuko Kabuto, and

 Hideki Sakurai*
Department of Chemistry and Organosilicon Research Laboratory, Faculty of Science Tohoku University, Aoba-ku, Sendai 980, Japan

Received October 27, 1993
As a part of studies on persilylated π-electron systems, particularly on persilylated benzenes, ${ }^{2}$ we are interested in hexakis(fluorodimethylsilyl)benzene (1) for its possible dynamic properties as a gear-meshed structure ${ }^{3}$ and for possible nonclassical neutral pentacoordinate silicon atoms. ${ }^{4}$ Herein we report the novel structure of 1 and related phenomena involving neutral pentacoordinate fluorosilane (Scheme 1).

Compound 1 was prepared by the reaction of hexakis(bromodimethylsilyl)benzene ${ }^{2 a}$ and antimony trifluoride in dry benzene as colorless crystals in 20% yield. ${ }^{5}$ X-ray crystallographic analysis ${ }^{6}$ revealed that the benzene ring was slightly distorted into a boat form with a gear-meshed structure (Figure 1). Distances of the bonding $\mathrm{Si}-\mathrm{F}$ bonds (average $1.68 \AA$) are longer than the standard tetracoordinate $\mathrm{Si}-\mathrm{F}(1.50 \AA$) and neutral pentacoordinate $\mathrm{Si}-\mathrm{F}$ (apical, $1.60 \AA$) bonds, ${ }^{7}$ while the nonbonding $\mathrm{Si}-\mathrm{F}$ distances (average $2.39 \AA$) are much shorter than the value of $2.63 \AA$, the minimal nonbonded approach between Si and $\mathrm{F} .{ }^{8}$ The distance (h) between a silicon atom and the center of the triangle formed by three carbon atoms of substituents of silicon is $0.29-0.34 \AA$. The h value should be 0 for the trigonal bipyramid and $0.6 \AA$ for the tetrahedral structures. All the F-Si-F
(1) Chemistry of Organosilicon Compound. 305.
(2) (a) Sakurai, H.; Ebata, K.; Kabuto, C.; Sekiguchi, A. J. Am. Chem. Soc. 1990, 112, 1799 . (b) Sekiguchi, A.; Ebata, K.; Kabuto, C.; Sakurai, H. J. Am. Chem. Soc. 1991, 113, 1464. (c) Sekiguchi, A.; Ebata, K.; Kabuto, C.; Sakurai, H. J. Am. Chem. Soc. 1991, 113, 7081. (d) Sekiguchi, A.; Ebata, K.; Terui, Y.; Sakurai, H. Chem. Lett. 1991, 1417.
(3) (a) Siegel, J.; Mislow, K. J. Am. Chem. Soc. 1983, 105, 7763. (b) Siegel, J.; Gutiérrez, A.; Schweizer, W. B.; Ermer, O.; Mislow, K. J. Am. Chem. Soc. 1986, 108, 1569 . (c) Schuster, I. I.: Weissensteiner, W.; Mislow, K. J. Am. Chem. Soc. 1986, 108, 6661 . (d) Kahr, B.; Biali, S. E.; Schaefer, W.; Buda, A. B.; Mislow, K. J. Org. Chem. 1987, 52, 3713. (e) Chance, J. M.; Kahr, B.; Buda, A. B.; Toscano, J. P.; Mislow, K. J. Org. Chem. 1988, 53, 3226.
(4) For recent reviews on pentacoordinate silicon compounds, see: (a) Corriu, R. J. P.; Young, J. C. In The Chemistry of Organic Silicon Compounds, Patai, S., Rappoport, Z., Eds.; John Wiley \& Sons: New York, 1989; Part 2; Chapter 20. (b) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371 . See also: (c) Tamao, K.; Hayashi, T.; Ito, Y. Shiro, M. J. Am. Chem. Soc. 1990, 112, 2422. (d) Tamao, K.; Hayashi, T.; Ito, Y.; Shiro, M. Organometallics 1992, II, 2099.
(5) Compound 1: colorless crystals; mp $175{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , benzene- $d_{6}, 298 \mathrm{~K}$) $\delta 0.55$ (septet, ${ }^{3} J_{\mathrm{HF}}=3.3 \mathrm{~Hz}, 36 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , benzene- $d_{6}, 298 \mathrm{~K}$) $\delta 3.26$ (septet, ${ }^{2} J_{\mathrm{CF}}=7.0 \mathrm{~Hz}, \mathrm{Me}$), 152.5 (septet, $\left.{ }^{2} J_{C F}=5.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{sr}}\right) ;{ }^{29} \mathrm{Si}$ NMR (59.6 MHz , toluene- $d_{8}, 328 \mathrm{~K}$) $\delta 6.13$ (septet, $\left.{ }^{1} J_{\text {SiF }}=43 \mathrm{~Hz}\right) ;{ }^{19}$ F NMR (282.4 MHz , benzene- $\left.d_{6}, 298 \mathrm{~K}\right) \delta-111.9(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , toluene- $d_{8}, 240 \mathrm{~K}$) $\delta 0.46\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=9.3 \mathrm{~Hz}, 36 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , toluene- $d_{8}, 240 \mathrm{~K}$) $\delta 3.4-3.9\left(\mathrm{~m}, \nu_{1 / 2}=40 \mathrm{~Hz}, \mathrm{Me}\right), 152.5-$ 152.7 ($\mathrm{m}, \nu_{1 / 2}=25 \mathrm{~Hz}, \mathrm{C}_{\mathrm{nr}}$); ${ }^{29}$ Si NMR (59.6 MHz , toluene- $d_{8}, 240 \mathrm{~K}$) $\delta 7.6$ $\left(\mathrm{t},{ }^{1} J_{\mathrm{SiF}}=127 \mathrm{~Hz}\right.$); ${ }^{19} \mathrm{~F}$ NMR (282.4 MHz , toluene- $d_{\mathrm{s}}, 240 \mathrm{~K}$) $\delta-113.8(\mathrm{~s})$; MS (70 eV) m / z (rel intensity) $534\left(2.3, \mathrm{M}^{+}\right), 519(16.4), 73$ (100); highresolution MS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{Si}_{6} 534.1337$, found 534.1334.
(6) Crystal data for 1 at $-78{ }^{\circ} \mathrm{C}: a=22.483(7) \AA, b=12.440(10) \AA, c$ $=22.864(6) \AA, \beta=118.73(17)^{\circ}, V=5607.7(51) \AA^{3}$, monoclinic with space group $P 2_{1} / a, Z=8, \rho=1.27 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by the direct method. Twoindependent molecules reside in a unit cell. The fluorodimethylsilyl groups are arranged around the benzene ring in a gear-meshed form, and the opposite arrangement results in a crystallographic orientational disorder. The silicons were refined by splitting the populations of the orientation ($0.7 / 0.3$ and $0.6 / 0.4)$. The final R factor was $0.0995\left(R_{w}=0.1036\right)$ for 4934 reflections with $F_{0}>3 \sigma\left(F_{0}\right)$.
(7) Klebe, G. J. Organomet. Chem. 1985, 293, 147.
(8) Glidewell, C. Inorg. Chim. Acta 1975, 12, 219.

trigonal-bipyramidal ($h=0 \AA$)
tetrahedral $(\mathrm{h}=0.6 \AA)$

Figure 1. Molecular structure of hexakis(fluorodimethylsilyl)benzene: top view and geometry around silicon.

Figure 2. Temperature dependent ${ }^{29} \mathrm{Si}$ NMR spectra of hexakis(fluorodimethylsilyl)benzene in toluene- d_{8}.

Scheme 1

angles are nearly linear ($171.9-178.9^{\circ}$, average 176°). On the whole, all the silicon atoms adopt a nearly trigonal bipyramidal configuration (Figure 1).
At low temperature (273 K), the ${ }^{29} \mathrm{Si}$ NMR of 1 shows a triplet ($J_{\mathrm{SiF}}=127 \mathrm{~Hz}$), indicating that all the silicon atoms interact with two fluorine atoms in accord with the solid-state structure. This triplet did not change to a doublet of doublets at the lowtemperature limit; however, these signals transformed at higher temperatures to a septet ($J_{\mathrm{SiF}}=43 \mathrm{~Hz}$ at 328 K) as shown in Figure 2. Correspondingly, all the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals which are triplets at 273 K become septets at 328 K . Noteworthy is the fact that chemical shifts in these NMR spectra did not change at all; only the coupling pattern changed.
This unusual dynamic behavior can be explained by a mechanism where, at low temperature, rotation of the silyl groups is frozen but fluorine atom transfer between vicinal silyl groups is rapid. This process corresponds to a cyclic network of intramolecular consecutive $\mathrm{S}_{\mathrm{N}} 2$ (Si) type Walden inversions which

low-temp. $\overparen{\int}$ bond-alternation

Figure 3. Merry-go-round degenerate fluorine migration.
are very rapid because each silicon atom already forms a quasipentacoordinate structure. ${ }^{9}$ As a consequence, triplet signals are observed. From a symmetry perspective, $\mathrm{Si}-\mathrm{F}$ bond alternation in the present study is analogous to the inversion mechanism studied by Chance et al., for hexakis(dimethylamino)benzene, although the molecular mechanism of the exchange is quite different. ${ }^{10}$
Septet signals mean that silicon and other atoms interact with six fluorine atoms equally at high temperature. At high temperature, rotation of the silyl groups is allowed and all the fluorine atoms migrate throughout the ring by a combination of $\mathrm{Si}-\mathrm{F}$ bond alternation and rotation. Although it is not proven in a strict sense, the gear-meshed motion is highly likely as the mechanism of rotation, since the molecule already takes the gearmeshed structure in the solid state. Fluorine atoms thus move like a merry-go-round (Figure 3).

The reaction of 1 and hexacarbonylmolybdenum gave complex 2, ${ }^{11}$ the ${ }^{29} \mathrm{Si}$ NMR spectrum of which showed only a triplet signal at $-2.6 \mathrm{ppm}\left(J_{\text {SiF }}=147 \mathrm{~Hz}\right)$ in the temperature range 298-368 K. Rotation about the $\mathrm{C}_{\mathrm{ar}}-\mathrm{Si}$ bonds is hindered by the introduction of the bulky metal carbonyl moiety, and the "merry-go-round" is stopped. $\mathrm{Si}-\mathrm{F}$ bond alternation remains a rapid process, unhindered by the steric bulk of the metal.
The quasi trigonal bipyramidal structures found for the silicon atoms of 1 are rather distorted from the ideal trigonal bipyramidal

[^0]

Figure 4. ORTEP drawings of hexakis(methoxydimethylsilyl)benzene: top and side views.
geometry. One of the reasons that 1 cannot take the ideal pentacoordinate structure must be the short $\mathrm{Si}-\mathrm{F}$ bonds, since the perfectly planar $D_{6 h}$ structure of $\mathrm{C}_{6}\left(\mathrm{SiMe}_{2} \mathrm{X}\right)_{6}(4)$ requires all $\mathrm{Si}-\mathrm{X}$ bond lengths to be $1.88 \AA$, much longer than the $\mathrm{Si}-\mathrm{F}$. Therefore, if an electronegative group with an $\mathrm{Si}-\mathrm{X}$ bond longer than the $\mathrm{Si}-\mathrm{F}$ distance could be introduced, the $D_{6 h}$ structure might be realized. Hexakis(methoxydimethylsilyl)benzene (3) would be a candidate, but no spectral nor structural information has been given except for ${ }^{1} \mathrm{H}$ NMR data. ${ }^{12}$ We have prepared compound 3 and examined the structure. Interestingly, the ${ }^{29} \mathrm{Si}$ NMR chemical shift of 3 appeared at the very high field of -64.2 ppm^{13} in the region of pentacoordinate silicon. ${ }^{14}$ The coupling constant ${ }^{1} J_{\mathrm{SiC}(\mathrm{Me})}$ of 3 was observed as 80 Hz in the ${ }^{13} \mathrm{C}$ NMR. The value is $4 / 3$ times larger than those of the other methoxysilanes, which are around 60 Hz .

The molecular structure of 3 determined by the X-ray crystallographic method (Figure 4) is remarkable in that the molecular framework of 3 is perfectly planar with 6 -fold symmetry. ${ }^{15}$ Oxygen atoms are located in between two silicon atoms with a distance of $1.88 \AA$, the value exactly expected from the $D_{6 h}$ structure 4. Each $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ is arranged in a linear configuration. The other angles across the silicon atoms in the equatorial plane are 120°.

Acknowledgment. We are grateful for the financial support of the Ministry of Education, Science and Culture of Japan (Specially Promoted Research No. 02102004).

Supplementary Material Available: Tables of X-ray experimental data, atomic parameters, anisotropic temperature factors, bond distances, and bond angles (21 pages); table of observed and calculated structure factors for 1 and 3 (35 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^1]
[^0]: (9) The pentacoordinate structure is not the transition state but the intermediate with the energy minimum for silicon. Dewar, M. J. S.; Healey, E. Organometallics 1982, 1, 103.
 (10) Chance et al. ${ }^{3 \mathrm{e}}$ observed that barriers to pyramidal inversion of nitrogen atoms in hexakis(dialkylamino)benzenes were substantially lower than barriers to rotation about the $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}$ bonds.
 (11) Compound 2: yellow crystals; mp $235{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right) \delta 0.44\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=11 \mathrm{~Hz}, 18 \mathrm{H}\right), 0.64\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=11 \mathrm{~Hz}, 18 \mathrm{H}\right) ;$ ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) $\delta 2.9-3.8(\mathrm{~m}), 4.0-4.9(\mathrm{~m}), 111.9-112.5$ $(\mathrm{m}), 219.9 ;{ }^{29} \mathrm{Si}$ NMR $\left(59.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right) \delta-2.64\left(\mathrm{t},{ }^{1} J_{\text {SiF }}=147 \mathrm{~Hz}\right)$; ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) $\delta-95.7$; high-resolution MS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{O}_{3} \mathrm{MoSi}_{6} 716.0240$, found 716.0243 .

[^1]: (12) Fink, W. Helv. Chim. Acta 1974, 57, 1010.
 (13) Compound 3: colorless crystals; mp $>250^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.29(\mathrm{~s}, 36 \mathrm{H}), 3.14(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.5$, $47.8,155.8 ;{ }^{29} \mathrm{Si}$ NMR ($59.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.2$; MS $(20 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ (rel intensity) $606\left(1.0, \mathrm{M}^{+}\right), 591(17), 397$ (100).
 (14) The ${ }^{29} \mathrm{Si}$ NMR signals of (methoxydimethylsilyl)benzene and 1,2bis(methoxydimethylsilyl)benzene are at 8.4 and 8.8 ppm , respectively.
 (15) Crystal data for 3 at $13^{\circ} \mathrm{C}: a=22.105(2) \AA, b=12.046(2) \AA, c$ $=12.619(3) \AA, V=3360.5(10) \AA^{3}$, orthorhombic with space group $C m c a$, $Z=4, \rho=1.20 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by direct methods, $R=0.099$ and $R_{w}=0.087$ for 1298 reflections with $F_{\circ}>3 \sigma\left(F_{0}\right)$. The molecule has a crystallographic 2-fold axis (through Si2 and C 2) and a mirror plane (include O 2 and C 7).

