Hexakis(fluorodimethylsilyl)benzene,

Hexakis(methoxydimethylsilyl)benzene, and Related Compounds. Novel Neutral Pentacoordinate Structures for Silicon and Merry-Go-Round Degenerate Fluorine Migration¹

Keisuke Ebata, Taro Inada, Chizuko Kabuto, and Hideki Sakurai*

Department of Chemistry and Organosilicon Research Laboratory, Faculty of Science Tohoku University, Aoba-ku, Sendai 980, Japan

Received October 27, 1993

As a part of studies on persilylated π -electron systems, particularly on persilylated benzenes,² we are interested in hexakis-(fluorodimethylsilyl)benzene (1) for its possible dynamic properties as a gear-meshed structure³ and for possible nonclassical neutral pentacoordinate silicon atoms.⁴ Herein we report the novel structure of 1 and related phenomena involving neutral pentacoordinate fluorosilane (Scheme 1).

Compound 1 was prepared by the reaction of hexakis-(bromodimethylsilyl)benzene^{2a} and antimony trifluoride in dry benzene as colorless crystals in 20% yield.⁵ X-ray crystallographic analysis⁶ revealed that the benzene ring was slightly distorted into a boat form with a gear-meshed structure (Figure 1). Distances of the bonding Si-F bonds (average 1.68 Å) are longer than the standard tetracoordinate Si-F (1.50 Å) and neutral pentacoordinate Si-F (apical, 1.60 Å) bonds,⁷ while the nonbonding Si-F distances (average 2.39 Å) are much shorter than the value of 2.63 Å, the minimal nonbonded approach between Si and F.⁸ The distance (h) between a silicon atom and the center of the triangle formed by three carbon atoms of substituents of silicon is 0.29-0.34 Å. The h value should be 0 for the trigonal bipyramid and 0.6 Å for the tetrahedral structures. All the F-Si-F

с., озамиза, п. з. Ат. Слет. Soc. 1991, 113, 1081. (d) Sekiguchi, A.; Ebata,
K.; Terui, Y.; Sakurai, H. Chem. Lett. 1991, 1417.
(3) (a) Siegel, J.; Mislow, K. J. Am. Chem. Soc. 1983, 105, 7763. (b)
Siegel, J.; Gutiérrez, A.; Schweizer, W. B.; Ermer, O.; Mislow, K. J. Am. Chem. Soc. 1986, 108, 1569. (c) Schuster, I. I.: Weissensteiner, W.; Mislow,
K. J. Am. Chem. Soc. 1986, 108, 6661. (d) Kahr, B.; Biali, S. E.; Schaefer,
W.; Buda, A. B.; Mislow, K. J. Org. Chem. 1987, 52, 3713. (e) Chance, J.
M.; Kahr, B.; Buda, A. B.; Toscano, J. P.; Mislow, K. J. Org. Chem. 1988, 53, 3226.

(4) For recent reviews on pentacoordinate silicon compounds, see: (a) Corriu, R. J. P.; Young, J. C. In *The Chemistry of Organic Silicon Compounds*, Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: New York, 1989; Part 2; Chapter 20. (b) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. *Chem. Rev.* **1993**, *93*, 1371. See also: (c) Tamao, K.; Hayashi, T.; Ito, Y. Shiro, M. J. Am. Chem. Soc. **1990**, *112*, 2422. (d) Tamao, K.; Hayashi, T.; Ito, Y.; Shiro, M. Organometallics **1992**, *11*, 2099.

(5) Compound 1: colorless crystals; mp 175 °C; ¹H NMR (300 MHz, benzene-d₆, 298 K) δ 0.55 (septet, ³J_{HF} = 3.3 Hz, 36 H); ¹³C NMR (75.5 MHz, benzene-d₆, 298 K) δ 3.26 (septet, ²J_{CF} = 7.0 Hz, Me), 152.5 (septet, ³J_{CF} = 5.0 Hz, C_{ar}); ²⁹Si NMR (59.6 MHz, toluene-d₈, 328 K) δ 6.13 (septet, ¹J_{SIF} = 43 Hz); ¹⁹F NMR (282.4 MHz, benzene-d₆, 298 K) δ -111.9 (s); ¹H NMR (300 MHz, toluene-d₈, 240 K) δ 0.46 (t, ³J_{HF} = 9.3 Hz, 36 H); ¹³C NMR (75.5 MHz, toluene-d₈, 240 K) δ 3.4–3.9 (m, $v_{1/2}$ = 40 Hz, Me), 152.5–152.7 (m, $v_{1/2}$ = 25 Hz, C_{ar}); ²⁹Si NMR (59.6 MHz, toluene-d₈, 240 K) δ 7.6 (t, ¹J_{SIF} = 127 Hz); ¹⁹F NMR (282.4 MHz, toluene-d₈, 240 K) δ 7.6 (t, ¹J_{SIF} = 127 Hz); ¹⁹F NMR (282.4 MHz, toluene-d₈, 240 K) δ 7.6 (t, ¹J_{SIF} = 127 Hz); ¹⁹F NMR (282.4 MHz, toluene-d₈, 240 K) δ 7.6 (t, ¹J_{SIF} = 127 Hz); ¹⁹F NMR (282.4 MHz, toluene-d₈, 240 K) δ 7.13.8 (s); MS (70 eV) m/z (rel intensity) 534 (2.3, M⁺), 519 (16.4), 73 (100); high-resolution MS m/z calcd for C₁₈H₃₆F₆Si₆ 534.1337, found 534.1334.

This (10 cV) with F_{10} (10 minuted by F_{10}) (12,1), F_{10} , F_{1

with $F_{0} > 3\sigma(F_{0})$. (7) Klebe, G. J. Organomet. Chem. 1985, 293, 147.

Figure 1. Molecular structure of hexakis(fluorodimethylsilyl)benzene: top view and geometry around silicon.

Figure 2. Temperature dependent ²⁹Si NMR spectra of hexakis-(fluorodimethylsilyl)benzene in toluene- d_8 .

Scheme 1

angles are nearly linear (171.9–178.9°, average 176°). On the whole, all the silicon atoms adopt a nearly trigonal bipyramidal configuration (Figure 1).

At low temperature (273 K), the ²⁹Si NMR of 1 shows a triplet ($J_{SiF} = 127$ Hz), indicating that all the silicon atoms interact with two fluorine atoms in accord with the solid-state structure. This triplet did not change to a doublet of doublets at the low-temperature limit; however, these signals transformed at higher temperatures to a septet ($J_{SiF} = 43$ Hz at 328 K) as shown in Figure 2. Correspondingly, all the 'H and ¹³C NMR signals which are triplets at 273 K become septets at 328 K. Noteworthy is the fact that chemical shifts in these NMR spectra did not change at all; only the coupling pattern changed.

This unusual dynamic behavior can be explained by a mechanism where, at low temperature, rotation of the silyl groups is frozen but fluorine atom transfer between vicinal silyl groups is rapid. This process corresponds to a cyclic network of intramolecular consecutive $S_N2(Si)$ type Walden inversions which

0002-7863/94/1516-3595\$04.50/0 © 1994 American Chemical Society

⁽¹⁾ Chemistry of Organosilicon Compound. 305.

^{(2) (}a) Sakurai, H.; Ebata, K.; Kabuto, C.; Sekiguchi, A. J. Am. Chem. Soc. 1990, 112, 1799. (b) Sekiguchi, A.; Ebata, K.; Kabuto, C.; Sakurai, H. J. Am. Chem. Soc. 1991, 113, 1464. (c) Sekiguchi, A.; Ebata, K.; Kabuto, C.; Sakurai, H. J. Am. Chem. Soc. 1991, 113, 7081. (d) Sekiguchi, A.; Ebata, K.; Terui, Y.; Sakurai, H. Chem. Lett. 1991, 1417.

⁽⁸⁾ Glidewell, C. Inorg. Chim. Acta 1975, 12, 219.

Figure 3. Merry-go-round degenerate fluorine migration.

are very rapid because each silicon atom already forms a quasipentacoordinate structure.⁹ As a consequence, triplet signals are observed. From a symmetry perspective, Si-F bond alternation in the present study is analogous to the inversion mechanism studied by Chance *et al.*, for hexakis(dimethylamino)benzene, although the molecular mechanism of the exchange is quite different.¹⁰

Septet signals mean that silicon and other atoms interact with six fluorine atoms *equally* at high temperature. At high temperature, rotation of the silyl groups is allowed and all the fluorine atoms migrate throughout the ring by a combination of Si-F bond alternation and rotation. Although it is not proven in a strict sense, the gear-meshed motion is highly likely as the mechanism of rotation, since the molecule already takes the gearmeshed structure in the solid state. Fluorine atoms thus move like a merry-go-round (Figure 3).

The reaction of 1 and hexacarbonylmolybdenum gave complex 2,¹¹ the ²⁹Si NMR spectrum of which showed only a triplet signal at -2.6 ppm ($J_{SiF} = 147$ Hz) in the temperature range 298-368 K. Rotation about the C_{ar}-Si bonds is hindered by the introduction of the bulky metal carbonyl moiety, and the "merry-go-round" is stopped. Si-F bond alternation remains a rapid process, unhindered by the steric bulk of the metal.

The quasi trigonal bipyramidal structures found for the silicon atoms of 1 are rather distorted from the ideal trigonal bipyramidal

Figure 4. ORTEP drawings of hexakis(methoxydimethylsilyl)benzene: top and side views.

geometry. One of the reasons that 1 cannot take the ideal pentacoordinate structure must be the short Si-F bonds, since the perfectly planar D_{6h} structure of C₆(SiMe₂X)₆ (4) requires all Si-X bond lengths to be 1.88 Å, much longer than the Si-F. Therefore, if an electronegative group with an Si-X bond longer than the Si-F distance could be introduced, the D_{6h} structure might be realized. Hexakis(methoxydimethylsilyl)benzene (3) would be a candidate, but no spectral nor structural information has been given except for ¹H NMR data.¹² We have prepared compound 3 and examined the structure. Interestingly, the ²⁹Si NMR chemical shift of 3 appeared at the very high field of -64.2 ppm¹³ in the region of pentacoordinate silicon.¹⁴ The coupling constant ¹J_{SiC(Me)} of 3 was observed as 80 Hz in the ¹³C NMR. The value is $\frac{4}{3}$ times larger than those of the other methoxy-silanes, which are around 60 Hz.

The molecular structure of 3 determined by the X-ray crystallographic method (Figure 4) is remarkable in that the molecular framework of 3 is perfectly planar with 6-fold symmetry.¹⁵ Oxygen atoms are located in between two silicon atoms with a distance of 1.88 Å, the value exactly expected from the D_{6h} structure 4. Each O-Si-O is arranged in a linear configuration. The other angles across the silicon atoms in the equatorial plane are 120°.

Acknowledgment. We are grateful for the financial support of the Ministry of Education, Science and Culture of Japan (Specially Promoted Research No. 02102004).

Supplementary Material Available: Tables of X-ray experimental data, atomic parameters, anisotropic temperature factors, bond distances, and bond angles (21 pages); table of observed and calculated structure factors for 1 and 3 (35 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

⁽⁹⁾ The pentacoordinate structure is not the transition state but the intermediate with the energy minimum for silicon. Dewar, M. J. S.; Healey, E. Organometallics 1982, 1, 103.

⁽¹⁰⁾ Chance *et al.*³⁰ observed that barriers to pyramidal inversion of nitrogen atoms in hexakis(dialkylamino) benzenes were substantially lower than barriers to rotation about the C_{ar} -N bonds.

⁽¹¹⁾ Compound 2: yellow crystals; mp 235 °C dec; ¹H NMR (300 MHz, C₆D₆, 298 K) δ 0.44 (t, ³J_{HF} = 11 Hz, 18 H), 0.64 (t, ³J_{HF} = 11 Hz, 18 H); ¹³C NMR (75.5 MHz, C₆D₆, 298 K) δ 2.9–3.8 (m), 4.0–4.9 (m), 111.9–112.5 (m), 219.9; ²⁹Si NMR (59.6 MHz, C₆D₆, 298 K) δ –2.64 (t, ¹J_{SiF} = 147 Hz); ¹⁹F NMR (282.4 MHz, C₆D₆, 298 K) δ –95.7; high-resolution MS *m*/*z* calcd for C₂₁H₃₆F₆O₃MoSi₆ 716.0240, found 716.0243.

⁽¹²⁾ Fink, W. Helv. Chim. Acta 1974, 57, 1010.

⁽¹³⁾ Compound 3: colorless crystals; mp >250 °C; ¹H NMR (300 MHz, CDCl₃) δ 0.29 (s, 36 H), 3.14 (s, 18 H); ¹³C NMR (75.5 MHz, CDCl₃) δ 3.5, 47.8, 155.8; ²⁹Si NMR (59.6 MHz, CDCl₃) δ -64.2; MS (20 eV) m/z (rel intensity) 606 (1.0, M⁺), 591 (17), 397 (100).

⁽¹⁴⁾ The ²⁹Si NMR signals of (methoxydimethylsilyl)benzene and 1,2bis(methoxydimethylsilyl)benzene are at 8.4 and 8.8 ppm, respectively. (15) Crystal data for 3 at 13 °C: a = 22.105(2) Å, b = 12.046(2) Å, c

⁽¹⁵⁾ Crystal data for 3 at 13 °C: a = 22.105(2) A, b = 12.046(2) A, c = 12.619(3) Å, V = 3360.5(10) Å³, orthorhombic with space group *Cmca*, Z = 4, $\rho = 1.20$ g cm⁻³. The structure was solved by direct methods, R = 0.099 and $R_w = 0.087$ for 1298 reflections with $F_o > 3\sigma(F_o)$. The molecule has a crystallographic 2-fold axis (through Si2 and C2) and a mirror plane (include O2 and C7).